top of page

Oyster Aquaculture Experiment in Cockeast Pond

SMAST Oyster collage.jpg

EPA Funded Oyster Experiment in Cockeast Pond

In September, 2016 it was announced that UMass Dartmouth School for Marine Science and Technology (SMAST) researchers have been awarded $525,967 by the U.S. Environmental Protection Agency to determine whether the development of oyster colonies can help restore southeastern Massachusetts estuaries and salt ponds endangered by high nitrogen levels. The Westport River Watershed Alliance (WRWA) is thrilled to partner with the Coastal Systems Program (CSP) UMass Dartmouth (SMAST) on a new project funded by a grant from the US EPA Southeast New England Program for Coastal Watershed Restoration.

The grant is part of a $4.6 million program to develop innovative, cost-effective strategies to protect coastal waters in southeastern Massachusetts and Rhode Island. The projects are intended to identify, test, and promote effective new regional approaches in critical areas such as water monitoring, watershed planning, nutrient and/or septic management, and resilience to climate change.

PROJECT COMPLETED 2021. Slideshow below details project results, partners, and information.

Multi-year study complete

Project History – 

The UMass Dartmouth initiative, led by Dr. Brian Howes and Dr. Roland Samimy at SMAST’s Coastal Systems Program, will use the Westport River and Cockeast Pond as a natural laboratory to measure how oysters can reduce nitrogen levels that destroy fish and other marine wildlife habitats. If proven successful, the strategy, which utilizes the natural power of the oyster to filter and clean water, could help reduce the need for high cost solutions such as expanded wastewater treatment systems. The first stage of the project is ongoing and involves a small scale viability test to determine if the oysters will survive in the Pond’s fluctuating temperature and salinity conditions. Assuming oysters are capable of surviving in Cockeast Pond, a larger scale experiment will be initiated in the summer 2017 using locally grown oyster seed from Riptide Oysters of Westport, MA. This full scale experiment will be geared towards measuring changes in nitrogen levels in the pond as a result of oyster filtration of the water column and the corresponding rebounding of native aquatic species.


The experiment will be continued into 2018 and 2019 to quantify the effects on water quality in Cockeast Pond as the oysters grow to full size and to determine the most effective ways to deploy large numbers of oysters for maximum water quality improvement and minimum affect on the useability of the resource. So far just over 30,000 oysters have been placed in the pond in 15 cages, constructed of high quality, industrial grade vinyl coated wire. The full scale experiment will involve around 500,000 oysters over approximately 2/3 of an acre of the 90+ acre pond (less than 1% of the total pond area).

WRWA’s role in this project was multi-faceted and focused on both science and outreach. We have had a sampling program for Cockeast Pond for many years and will continue to perform all water quality sampling in coordination with the CSP. We will also be involved in the set-up of the various oyster gear as well as the deployment and maintenance of the oysters. Additionally, WRWA will engage in community outreach by distributing information to residents regarding the project and its results on our website and Facebook page. We will work closely with the CSP to include videos, data, and other relevant information gathered for the project. We will also assist in arranging and participate in local workshops and presentations.

“Addressing the nitrogen problem along the SouthCoast, Cape Cod and the South Shore will cost billions of dollars if we only consider traditional strategies such as bigger wastewater treatment plants and more sewer lines,” Dr. Howes said. “We just don’t have the time or money for that course. It is, therefore, imperative that we find soft solutions that leverage nature, in this case the oyster, to make progress.”

These projects are funded through EPA’s Southeast New England Program (SNEP). Since its launch in 2014, SNEP’s mission has been to seek and adopt transformative environmental management. The program’s geographic area encompasses the coastal watersheds from Westerly, Rhode Island to Chatham, Massachusetts, and includes Narragansett Bay and all other Rhode Island coastal waters, Buzzards Bay, and southern Cape Cod as well as the islands of Block Island, Martha’s Vineyard, and Nantucket. While this research project is being undertaken in the Town of Westport, the results are meant to be transferrable to all the towns in the region that are seeking cost effective and innovative ways to push forward with estuarine restoration. Moreover, this investigation does not preclude the Town from looking into ways to reduce nutrient load from the Cockeast Pond watershed as a parallel effort.

bottom of page